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5 BHAL (Seung-Eun Roh)

Johns Hopkins University

Imaging immediate early gene NPTX2 at synapses
in vivo during critical period plasticity and behavior
relevant to schizophrenia

0| &< HhAL (Sang Soo Lee)

Johns Hopkins University

Plasticity of an excitatory thalamic circuit
controls homeostatic SWS persistence

ZE} 2t YA (Taewan Kim)

Memorial Sloan Kettering Institute

Human Pluripotent Stem Cell based Platform to
Study and Treat Parkinson’s Disease

42t HtAL (Jung Park)

Columbia University

Novel experience resets brain circuitry to
facilitate cognitive flexibility

2022 KOREAN-AMERICAN BIOSCIENCE FORUM SPEAKERS

Z 26} At (Eunha Kim)

Harvard Medical School

Maternal gut bacteria drives intestinal inflammation
in offspring with neurodevelopmental disorders by
altering the chromatin landscape of CD4+ T cells

S8)|Z 4tA} (Haejin Yoon)

Harvard Medical School

Dynamic regulation of mitochondrial metabolism
in metabolic disease

As1A BEAL (Heonseok Kim)

Stanford University

Single cell characterization of CRISPR-modified
transcript isoforms with nanopore sequencing

28 M HAL (John Yoon)

University of California Davis

Molecular Control of Thermogenesis and Energy
Balance
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Single molecule studies of RNA polymerase Il transcription
How is mRNA synthesized?
Inwha Baek, M.S., Ph.D., inwhabaek@g.harvard.edu
Harvard Medical School, Boston, MA, USA

Background

RNA polymerase Il (Pol Il) transcription is a highly regulated and dynamic process involving
multiple steps. To successfully produce mRNA, distinct transcription initiation, elongation, and
termination factors need to be recruited to and released from Pol Il in a timely manner. However,
the kinetics of these factors are poorly characterized because past studies utilized ensemble
assays, which can only reveal the averaged behavior of individual molecules. Using single-
molecule fluorescence imaging, we examined the dynamics of Pol Il and general transcription
factors (GTFs) during preinitiation complex (PIC) assembly in nuclear extracts, a complex
environment recapitulating transcription activator-dependent Pol Il transcription.
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- In an activator-dependent PIC assembly, Pol II, TFIIF and TFIIE can preassemble on
enhancer-bound activators before loading into PICs at promoter.

- TFIIH binding is dependent on the core promoter.

- Activators can recruit multiple Pol || molecules at enhancer.

More details: Baek, et al., Molecular Cell, 2021, Rosen* & Baek*, et al., PNAS, 2020
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Formation of Intercellular Tunneling Nanotubes

Minhyeok Chang, Ph.D (mchang60@jhmi.edu)
Johns Hopkins University, Baltimore, MD 21205, USA

Background
Tunneling nanotubes (TNTs) are sub-micrometer SFB as a close-ended TNT
thin routes that directly connect distant cells.

Model of DFB transition to a TNT
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Durable Alterations of Hematopoiesis and Chromatin post-COVID-19
Jin Gyu Cheong, jic2016@med.cornell.edu
Weill Cornell Graduate School, New York, NY

Backgrounds : SARS-CoV-2 infection
is often associated with extended
systemic inflammatory features that
are well-established to influence
hematopoiesis and epigenetic memory
of inflammation in innate immune cells
and their progenitors. To study this, we
performed combined snRNA/ATAC-
seq on 197K of PBMCs, including 28K
of HSPCs from convalescent COVID-

19 patients.
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1. Using ShnRNA/ATAC-seq of PBMC and |

HSPC, we defined distinct cell types as
well as HSPC subtypes.
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2. Cohort frequency in neutrophil progenitor
cluster(A) and GO analysis of transcriptomic
data of HSPC(B) displays altered
hematopoiesis post-severe COVID-19.
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3. Epigenetic memory persists in HSPC and
CD14+ monocytes post-COVID-19.
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Egr3 mRNA Fold Change

°

Figure 1: Nab2, the corepressor of Egr3,
displays opposite regulation to Egr3 in D2-MSN
subtypes after repeated exposure to cocaine in
mice. IP injection of cocaine (7 days, 20mg/kg)

Background
Basal ganglia circuitry is critical for
mediating motivation for natural reward.
This Circuitry is disrupted by drugs of
abuse, such as cocaine, which induces
adaptations at the molecular level and
underlie  motivational drive geared
toward seeking drugs.
Previous studies have shown an
opposing role for Egr3 in nucleus
accumbens(Nac) cell subtypes in
cocaine action
Here we study the D2-medium spiny
neuron specific role of Nab2, a co-
regulator of Egr3, in cocaine self-
administration and seeking behavior

Repeated cocaine + 24hr withdrawal

Hl Saline
Cocaine

2

D1-MSN D2-MSN

Nab2 mRNA Fold Change

DAJSN nOMSN

in mice n=6. *p<0.05, ***p<0.001

Cell Subtype Specific Role of Nab2 in Cocaine Self-administration ﬁ

Eric Y. Choi, B.A., eric.choi@som.umaryland.edu ,

CRISPRI
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Figure 2: A. dCas9-KRAB CRISPRI system targeted by
Nab2 and Egr3 gRNA mimics the bidirectional regulation
of Nab2 and Egr3 mRNA expression shown in a cocaine
IP injection model. B. H3K4me3 and H3K27ac enriched
Cut & Run shows decreased enrichment of Nab2
chromatin. Experiments performed in Neuro2A cell line.
*p<0.05, **p<0.01, ***p<0.001

University of Maryland School of Medicine, Baltimore, MD, USA ‘é.
Stereotaxic Injection /]

AAV-Nab2 miRNA-EYFP or Tissue collection
Control scramble miRNA at 24h

A2A-Cre Mice i ) Cocaine Seeking ‘//YTY'\\
- G et D

Figure 3: Timeline of in vivo cocaine intravenous self-
administration experiment

IVSA: Cocaine: (0.5 mg/kg/infusion) Cocaine Seeking (60min)
-+ ssmiR saline
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Figure 4: A. 10 Days of cocaine self-administration shows Nab2
KD in D2-MSNs lead to lower cocaine intake. B. Mice with Nab2
KD in D2-MSNs mice made significantly lower active nose pokes
during 1hr cocaine seeking test. *p < 0.05 at least, ****p <
0.0001. ssmiR saline n=16, ssmiR cocaine n=15, Nab2 saline
n=12, Nab2 cocaine n=15
Future Directions

We plan to use the tissue punches from cocaine self-administered
mice for single nuclei RNA-seq to elucidate Nab2 driven
transcriptomic changes that occur during cocaine seeking. From
those findings we further study the downstream mechanisms that
lead to this attenuated cocaine intake and seeking.

Saline Cocaine



Background

Epicardial histone deacetylase 3 (Hdac3) promotes myocardial growth through a novel microRNA pathway

Jihyun Jang, PhD, jhjang@som.umaryland.edu
University of Maryland School of Medicine, Baltimore, MD, USA

Results
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Fig.1 Specific inactivation of Hdac3 in developing epicardium results in
icular wall hypoplasia
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.3 Hdac3 deletion resulted in downregulation of FGF9 and IGF2. |

miR-322 and miR-503 repress the expression of FGF9 and IGF2
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| Fig.4. Supplementation of FGF9 or IGF2 rescues cardiomyocyte proliferation
defects.

Fig.2. Reduction of Epicardial Derived Cell (EPDC)s in Hdac3 epicardial
knockout hearts.
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Heac3 in the epicardium defines epicarilal lineage darbvation
Epicardial Hdac3 is important for myocar

Hdac3 induces expression of FGF9 and IGF2 by suppressing miR-322
and 503,

i

Our findings reveal a critical signaling pathway in which epicardial HDAC3

romotes compact myocardial growth by stimulating FGF9 and IGF2 through
repressing miR-322/miR-503, providing novel insights in elucidating etiology
of congenital heart defects, and conceptual strategies to promote myocardial
regeneration.

For more detail
Jang J, Song G, Li Q, Song X, Cai C, Kaushal S, Li D. Epicardial histone
deacetylase 3 promotes myocardial growth through a novel microRNA pathway.
BioRxiv [Preprint]



Background

COVID-19 is an infectious disease caused by the
novel coronavirus SARS-CoV-2. A growing number of
sensory symptoms have been linked to this illness.
Here, we describe patients with COVID-19 and new-
onset of hearing loss, tinnitus and/or dizziness. To
investigate whether these symptoms might be due to
direct infection of audiovestibular structures, we
examined the expression of SARS-CoV-2 cell entry-
related genes and proteins in human and mouse inner
ear tissue, and we infected human vestibular tissue to
identify target cell types of SARS-CoV-2.

Potential paths for SARS-CoV-2 entry into the inner ear.

Direct SARS-CoV-2 infection of the human inner ear m
Minjin Jeong, Ph.D, jeongm@stanford.edu, Stanford University & |

Results

SARS-CoV-2 infected

Q

10um

Supporting cells

Vestibular neurites

SARS-CoV-2 infection in human inner ear. Surgical specimens of
human vestibular end organs from the inner ear include vestibular hair
cells, supporting cells, Schwann cells, and vestibular neurons. SARS-
CoV-2 entry-related proteins (ACE2, TMPRSS2, and FURIN) are
expressed in MYO7A+ hair cells especially at their apical regions. At 48
hours post-infection, we observed viral double-stranded RNA (dsRNA) in
hair cells and not in vestibular neurites.

For more details, Jeong, M. et al. Direct SARS-CoV-2 infection of the
human inner ear may underlie COVID-19-associated audiovestibular
dysfunction. Commun Med 1, 44 (2021). %




Maternal gut bacteria drives intestinal inflammation in offspring with neurodevelopmental disorders by altering the chromatin landscape of CD
b

Eunha Kim, Ph.D.
Department of Immunology, Blavatni

Eunha Kim@hms.
Institute, Harvard Medical School, Boston, MA 0211

arvard.edu
, USA

Abstract

Healthy Pregnancy Inflammation during Pregnancy
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+  Prenatal and early life are critical

MIA offspring show increased susceptibility to
inflammation
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(A) Seven to eight-week-old offspring (PBS and MIA offspring) born to PBS- or
poly(1C)-injected dams at E12.5 were pre-treated with metronidazole for four
days and then infected with 2 x 10% colony forming units (CFUs) of C.
rodentium. All analyses were done ten days post-infection with C. rodentium.
(B-C) Colon length (B), H & E staining of the colons and the associated
histology scores (C) of PBS and MIA offspring. (D) The composition of colonic
lamina propria T cells was analyzed by flow cytometry. Representative flow
plots of IL-17A- and IFN-y-producing CD4- T cells, RORy* IL-17A-producing
CD4* T cells and FoxP3* regulatory T cells. All flow plots were gated on live,
CD45*, TCRP*, CD4*, CD8', and CD19- cells.

for human health.

+ Viral infection during pregnancy correlates with an
increased frequency of autism spectrum disorders (ASD) in
offspring.

+  Individuals with ASD are also known to display a broad
range of non-neurological comorbidities, including immune
and gastrointestinal (GI) dysfunction.

+ However, the mechanisms by which inflammatory
phenotypes manifest as comorbid symptoms of
neurodevelopment disorders are largely unknown.

+ The viral mimetic polyinosinic:polycytidylic acid (poly{l:C])
induced maternal immune activation (MIA) rodent model
has been to study and
behavioral abnormalities of the offspring.

* We leveraged this model to investigated the long-term

of prenatally
inflammation of the offspring.

The increased immune susceptibility of MIA
offspring is postnatally determined
A g con s ormne B
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(A) PBS and MIA offspring were cross-fostered upon birth (P0). Seven to
eight-week-old offspring were used for behavioral tests, followed by C.
rodentium infection experiments. (B) Percentage of interaction in the three-
chamber soci of PBS0-PBSd, MIA0-PBSd, PBS0-MIAd, and MIAo-
MIAd offspring. (C)The composition of colonic lamina propria T cells was.
analyzed by flow cytometry. Quantifications of IL-17A-, IFN-y-, and IL-17A-
and IFN-y-producing CD4- T cells, RORy* IL-17A-producing CD4* T cells, and
FoxP3* regulatory T cells of PBSo-PBSd, MIAo-PBSd, PBS0-MIAd, and MIAo-
MIAd offspring.

primed immune phenotypes in offspring
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(A) Female BS GF mice were colonized with fecal bacteria of stool samples
collected at E14.5 from either PBS or MIA dams (PBS-ST [stool-transferred]
and MIA-ST, respectively) and a week later mated to male B6 GF mice.
Offspring (PBS-ST offspring and MIA-ST offspring, respectively) from the.
mating were subjected to behavioral analyses followed by C. rodentium
infection at 7-8-weeks-of age. (B) Percentage of interaction i in the three-
chamber sociability test of PBS-ST and MIA-ST offspring. (C)The composition
of colonic lamina propria T cells was analyzed by flow cytometn
Quantifications of IL-17A-, IFN-y-, and both IL-17A- and IFN-y-producing CD4*

T cells, RORY* IL-17A-producing CD4* T cells, and FoxP3" regulatory T cells.

+ T cells of MIA offspring display enhanced
inflammatory phenotypes in vivo
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(A) Naive CD4- T cells were isolated from 4-week-old CD45.1 PBS and CD45.2 MIA
offspring. PBS and MIA naive CD4" T cells were mixed in a 1:1 ratio and transferred into
RAG1-deficient mice. Four weeks after transfer, transferred cells were retrieved, sorted by
congenic markers, and analyzed by RNA sequencing. (B) Graph showing the key GO terms
that were enriched in the differentially expressed genes between PBS vs. MIA CD4: T cells,
(C) Volcano plot displaying log2 fold change vs. P-value for each gene. Genes considered
significant (P < 0.01 and log2FC > 1) are labeled in orange, and selected genes involved in T
Collacivation and MAPK activity are labeled in blue. (D) GSEA analysis demonstrating
significant enrichment of gene sets associated with MAPK activity, IL6-JAK-STATS signaling,
and Th17 cell differentiation.

CD4+ T cells of MIA offspring display enhanced
inflammatory phenotypes in vivo

FE P

(A) Naive CD4* T cells (CD4*, TCR@", CD45RBNah, CD44<, CDB2LY#, and
CD25) were isolated from the spleens and the lymph nodes of PBS and MIA
offspring at 4 weeks of age, and 5  10% cells were transferred to RAG1-
deficient mice. (B) Body weight changes were monitored for 5 weeks (1 = 15
per group). (C and D) Measurement of the colon length (n = 8 per group) (C)
and histological analysis with H & E staining (n = 3, 5) (D) were performed &
wieeks after the transfer.

MIA naive C

T cells display distinct chromatin
accessibility

(A) Nalve CD4- T cells were isolated from 4-week-old PBS and MIA offspring and subjected
to ATAC-seq analyses. (B) Scatter plot represents the differences in chromatin accessibility
between PBS and MIA naive CD4- T cells. Orange dots indicate peaks that are statistically
significantly more accessible in MIA naive CD4* T cells, and blue dots indicate those that are
uniquely accessible in PBS naive CD4" T cells (fold change > 1.5, FDR ). (C)GO terms
that were enriched in the differential open chromatin regions (OCRs) of MIA naive CD4* T
cells compared to those of PBS offspring.

* Mice prenatally exposed to maternal immune activation display immune-primed phenotypes
* Maternal immune activation (MIA) induces changes in the gut microbiota of pregnant mice
* Altered microbiota promote immune priming by affecting T cells' chromatin accessibility

* Maternal IL-17A shapes the immune-primed phenotypes through changes in microbiota




Single cell characterization of CRISPR-modified
transcript isoforms with nanopore sequencing
Heonseok Kim, Ph.D., heonseok@stanford.edu, Stanford university, CA, USA

Background

We developed a single-cell approach to
detect CRISPR-modified  transcript
structures. This method assesses how
genetic variants at splicing sites and
splicing factors contribute to alternative
mRNA isoforms. Our method combines
long-read sequencing to characterize the
transcript  structure and  short-read
sequencing to match the single-cell gene
expression profiles.
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Conclusion

Our approach demonstrates a new method
for the characterization of various CRISPR-
induced transcript modifications.
For more details
H. S. Kim et al., BioRxiv, 2021
H. S. Kim et al., GenomeBiology, In Press




Human Pluripotent Stem Cell (hPSC) based Platform to
Study and Treat Parkinson’s Disease (PD)

Tae Wan Kim, Ph.D.

The Center for Stem Cell Biclogy, Memorial Sloan Kettering Cancer Center, New York, NY, USA

* Human ESCs
* Human iPSCs

Disease Modéling .

Clinical Grade Dopamine{DA) Neuron

Differentiation Protocol from hPSC

Directed Differentiation Strategy
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Resampling analysis of single-cell RNA-seq data using deep

learning methods

Kyung Dae Ko, Ph. D, (kok3@nih.gov)
National Institutes of Health, Bethesda, MD, USA.

Introduction Case 1: Atlas of Mouse Case 2 : The impact of
Muscle Regeneration Polycomb to muscle
P FS— satellite cell

Mature skeletal muscle Mature skeletal muscle

~ Anti-inflammatory MuSCs and
FAPS (agtivated) 4 macrophages.

]
Macrophages/
APCs

{

Faps. F A
FAPs | Tenccytos Mdcrophages/ Fig3. The mechanism of skeletal muscle regeneration [2].

o Macrophages/
APCs 2
Adversaral ) K- 3
. - cost 6 enocytes | faps acrophag
0 Endbthelial (activated)  es/APCs 2

samples from p(z)

Fig1. The concept and workflow of Adversarial autoencoder for roontors Endothalial™, |
single cell analysis NKIT calis & ¥ )

Procedure 5

+ Remove all zero's genes

Data
Preprocess,

+ Normalize UMI matrix }

Sstiohihoritzm

+ Transform the matrix to input matrix or an
input layer
+ Build layers of autoencoder and adversarial
layers
WLCEI |- Calculate costs in adversarial layers during
training training the autoencoder to find optimal steps

+ Reconstruct a matrix using latent input

+ Validate the reconstruct matrix using Seurat
and singleR packages

+ Infer biological functions using GO analysis

seasaietiiiditibriortia ol

Fig2. (A) UMAP-based clustering (B) heatmaps of original
and reconstructed datasets related to atlas of mouse muscle
regeneration [1].

Summary

Adversarial autoencoder can relieve
dropout events and low RNA capture
through denoising and imputation.

The salient characteristics of the
pipeline are its independence from
annotation biases, and improve the
accuracy to detect transcriptional
signatures and infer the changes of
cell status under external environment
influence.




Plasticity of an excitatory thalamic circuit
controls homeostatic SWS persistence

Sang Soo Lee, PhD, slee496@jhmi.edu
Johns Hopkins University School of Medicine, Baltimore, MD, USA

Background: Sleep is regulated by both
circadian and homeostatic controls. However, the
neural architectures underlying homeostatic slow-
wave sleep (SWS) are unclear. In this study, we
identified a novel excitatory neural circuit in a local
thalamic area driving homeostatic SWS persistence.

Stimulation of local thalamic VGLUT2*
neurons drives persistent SWS
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Summary: Activity of local glutamatergic
neurons in the thalamus is sufficient and necessary
for driving homeostatic SWS. The SWS persistence
is possibly driven by homeostatic neural plasticity.




ek ——

Jpx RNA regulates CTCF anchor site selection and
formation of chromosome loops

Hyun Jung Oh, Ph.D. (hjoh@molbio.mgh.Harvard.edu)
Massachusetts General Hospital, Harvard Medical School, Boston, MA

Background LNA-mediated Jpx depletion results in toop —

Trans-acting long ncRNA Jpx downregulation of genes, ectopic CTCF s Yoo Frezew
and de novo loops )
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Novel experience resets brain circuitry to facilitate cognitive flexibility
Alan Jung Park, Ph.D., jp3532@columbia.edu (-

Columbia University, New York, NY, USA

P

Background

1. Novelty positively affects cognitive function
by activating dopamine D1-receptors (D1Rs).
2. Novelty activates the ventral hippocampus
(vHPC), and medial prefrontal cortex (MPFC).

E Novelty resets

n Novel Experience Enhances Learning
Free Ch0|ce (Day1 3) C

Novel
_» Familia m. B
I g Arm Bias ”
", |

B Flexible Choice (Day 4) £

Il I| x40

DeI;yed Non Match- to -Sample
A. Mice (n = 10) established an arm bias after
free choice sessions (t-test, f = 8, P < 0.0001).
B. Flexible choice training. C. Mice were
exposed to a novel (n = 17) or a familiar (n = 20)
arena 1 hour before flexible choice training. The
novel group learned more rapidly. Two-way RM

Day1 -3
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Optogenetic stimulation of vHPC
terminals in the mPFC. Novelty
weakens vHPC—-mPFC field

270

excitatory postsynaptic potentials
(FEPSPs) (two-way RM ANOVA,
time x group, F304 = 9.2, P=0.0
003; 5 mice each).

E Novelty-Responsive D1R-Expressing vHPC

L SO > E—

1. Novelty facilitates learning.
2. Novelty resets vHPC-mPFC
circuitry.

3. D1Rs in the vHPC mediate

the effects of novelty.

ANOVA, F 3 1365 = 2.4, P < 0.0001.

Cells Mediate Novelty- Enhanced Learnlng
A Bilateral VHPC injection B Famia

3.3% ‘
Cal-Light virus (eNpHR or eGFP)

301%

96.7%
DIR + ann
D1R only

A. Blue Ilght tagged
J- novelty responsive cells,
expressing inhibitory opsin
| (eNpHR). Green light
e 2 % @ inhibited tagged cells.
B. Novelty tags D1R positive cells (blue),
expressing eNpHR (green) (novel, n = 628;
familiar, n = 611 cells; x2 test, P < 0.0001). C.
Inhibiting tagged cells blocked novelty-
enhanced learning (two-way RM ANOVA; n=5
for each group, Fy g = 12.4, P=0.008).
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Reference

Park et al. Reset of hippocampal — prefrontal
circuitry facilitates learning. Nature (2021)




Present and Future of Targeted protein degradation (TPD) technologies

m Icahn School of Medicine
at Mount Sinai

= Background

» Small molecules that hijack the cellular protein
ubiguitination machinery to selectively degrade
proteins of interest, so-called degraders, have
recently emerged as altematives to selective
chemical inhibitors, both as therapeutic
modalities and as powerful research tools.

* Proteolysis-targeting chimeras (PROTACS)
contains two linked moieties with one binding
the POl and the other binding an E3 ligase.

» The formation of an E3-degrader—POI ternary
complex results in pohubiquitination of the POI
and #ts subsequent degradation by the 268
proteasome.

¥ Infroduction of PROTAC

Kwang-Su Park, Ph.D

Icahn school of medicine at Mount Sinai, NewYork, USA

(kwang-su.park@mssm.edu)

¥ Improvement efficacy compared with conventional
inhibitors
1) EZH2 degrader

D v

Ma, A® Stratikopoulos, E.*, Park, KS.* ef af Wal Chem B/ 2020, 16, 214-222

2) NSD3 degrader

Dale B, ChengM™ , Park KBS, et al. Nat Rev Cancer. 2021, 21, 638654

HuC MengF ParkKS, etal CeffiChem Biof 201

o

¥ Mechanism: Chemically induced protein-protein interaction
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“Cooperative Interaction™
Y ), Li D, Kottur J, Shen v, Kim HS, Park KS, et al. Sci TransiMed 2021, 13, eabji 578

v Exploring News E3 Ligase

Weild, Meng F ParkKS, etal fAm Chem Soc. 2021, 143, 1507 3-15083.

= Summary

» Targeted protein degradalion technologies can overcome
hurdles from conventional drug discovery such as off-
target effect, drug-resistance and targeting undruggable
targets.

% Inducing new protein-protein interaction is one ofkey
mechanism for targeted protein degradation technologies




Imaging in vivo synaptic trafficking of immediate early gene Neuronal Pentraxin 2 (NPTX2)

during critical period plasticity and behavior relevant to schizophrenia
Seung-Eon Roh, Ph.D (sroh3@jhmi.edu), Johns Hopkins University School of Medicine, Baltimore, MD, USA

Background

NPTX2 in an immediate early gene secreted from
pyramidal neurons onto excitatory synapses of
Parvalbumin interneurons  (PV-INs), meditating
inhibitory circuit homeostatic scaling by clustering
AMPAR. Despite its strong implications in synaptic
plasticity and neurological diseases such as
Alzheimer's disease and psychiatric diseases, the
synaptic trafficking has not been examined in vivo
due to a lack of tools. In addition to electrophysiology,
biochemistry and behavioral methods, | used 2-
photon microscopy of pH-dependent GFP (Super-
ecliptic pHluorin)-fused NPTX2 to monitor dynamics
of NPTX2 synaptic trafficking during critical period
plasticity and behavior relevant to schizophrenia.

Longitudinal imaging of NPTX2 trafficking using in vivo 2P microscopy
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Figure 1. Monocular-deprivation selectively eliminates Figure 3. Manipulation of NPTX2 can

functional connections between Pyr->PVs in Layer2/3. gate ocular dominance plasticity (ODP).
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F|gure 4 CSF NPTX Ievels are reduced
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Figure 6. Diurnal NPTX2- SEP trafflcklng is
abolished in Arc-/- and Homer1a-/- mice.

Summary

1. MD-induced Pyr->PV disconnections
depend on NPTX2 reduction.

2. NPTX2 manipulation gates ODP.

3. CSF level of NPTX2 is reduced in
schizophrenia patients.

4. Normal diurnal oscillation of NPTX2
trafficking is impaired in schizophrenia
animal models.

Conclusion NPTX2 trafficking that gates
ODP is impaired by schizophrenia genetic
factors, creating vulnerability to stress and
environmental factors.
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Clinical Development of Olinvacimab and Others

Jin—San Yoo jinsan.yoo@PharmAbcine,com PharmAbcine L
Aoty Therpeses 7 L0~

Olinvacimab &
Pembrolizumab combo
(mTNBC)

Olinvacimab mono

Anti-VISTA Ab restores immune activity of T cells through
inhibition of VISTA interaction

Phase Ib (2018.10~ ongoing) Phase Il (In preparation)
Australia, South Korea

* 36 patients planned

* HREC approval expected in 3021

Australia
« 2 patients still receiving treatment
+ The study will be finalized in 4021

Phase lla (2019.11~ ongoing)
PMC- PMIC-
Australia, U.S cel 9
Delay in patient recruitment due to 30 -
CcoviD-19 I\
12 out of 36 patients recruited

The study to be finalized by 2023

Phase Ib (2018.10~ ongoing) Wil not proceed to

Olinvacimab &
Pembrolizumab combo Australia phase Il for right now! ” 7,
(rGBM) * SD:44%, (1 pt.in SDover 21 months) ™ > . g
« 1 patient still receiving treatment Looking for co- @. . (G
*  The study will be finalized in late 2021 development Partner! Increases e« ko
proinflamma
tory =
cytokines  Tumor growth
inhibition

* MDSCs (Myeloid-derived suppressor cells) : Interact with T cells and inhibit
immune response

*VISTA (V-domain Ig suppressor of T cell Activation) : An immune
checkpoint molecule overexpressed on MDSC




PHD?3 loss promotes exercise capacity and fat oxidation in skeletal muscle

Haejin Yoon', Jessica B. Spinelli’, Elma Zaganjor', Samantha J. Wong', Allen Clermont?, Nathalie Y. R. Agar®,
Laurie J. Goodyear?, Reuben J. Shaw*, Steven P. Gygi', Johan Auwerx’, and Marcia C. Haigis'

partment o

INTRODUCTION and ABSTRACT:
PHDs and the cellular fuel choices

Countless studies have demonstrated

Boston,

PHD3 modifies ACC2 by site-specific
prolyl- hydroxylation (OH-Pro)

Prosio 4612  KDVDECLENAERIGRRALNIKA

nutrent deprivation to maintain metabolic
homeostasis (2.

Prolyl hydroxylase domain family members (PHDs, also called EGLN1-3) are
implicated in metabolic_reprogramming. PHDs are well known to modulate

He is ot a major HIF
ow oxygen than other PHDS (b).

Abstract: Rapid alteations in cellular metabolism P03

physiological
consequence thereof is poorly understood.
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« Since PHD3 regulates FAO but we saw no effect on fat
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[ % EphrinB2/Ror2 interaction regulates neural tube closure.
Jaeho Yoon Ph.D., jaehoyoon25@gmai.com
Cancer & Developmental Biology Laboratory (CDBL), CCR, NCI, NIH MD
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Molecular Control of Thermogenesis and Energy Balance
John Yoon, M.D., Ph.D., jcyoon@ucdavis.edu
University of California Davis School of Medicine

B-adrenergic stimulated adipocyte thermogenesis controls energy balance in the body
Letmd1 is a brown adipocyte protein induced by -adrenergic signaling
« Loss of Letmd1 abolishes [33-adrenergic-dependent thermogenesis

+ Letmd1 interacts with the chromatin remodeler BRG1 to regulate thermogenic genes W||d'tYPe Letmd1 KO
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Choi KM et al (2021) Cell Reports 37:110104.
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